A Result on Representations of Homology Manifolds by Finite Spaces
نویسنده
چکیده
We prove a result relating the Euler characteristic of a polyhedral closed homology manifold to the finite space associated with a triangulation of the manifold. We then give a new proof that polyhedral closed homology manifolds have Euler characteristic 0.
منابع مشابه
Higher order representation stability and ordered configuration spaces of manifolds
Using the language of twisted skew-commutative algebras, we define secondary representation stability, a stability pattern in the unstable homology of spaces that are representation stable in the sense of Church, Ellenberg, and Farb [CEF15]. We show that the rational homology of configuration spaces of ordered particles in noncompact manifolds satisfies secondary representation stability. While...
متن کاملPoincaré Duality Spaces
The original proof used the dual cell decomposition of the triangulation of X . As algebraic topology developed in the course of the century, it became possible to extend the Poincaré duality theorem to non-triangulable topological manifolds, and also to homology manifolds. In 1961, Browder [Br1] proved that a finiteH-space satisfies Poincaré duality. This result led him to question whether or ...
متن کاملAdmissible Representations and Geometry of Flag Manifolds
We describe geometric realizations for various classes of admissible representations of reductive Lie groups. The representations occur on partially holomorphic cohomology spaces corresponding to partially holomorphic homogeneous vector bundles over real group orbits in complex flag manifolds. The representations in question include standard tempered and limits of standard tempered representati...
متن کاملSome aspects of cosheaves on diffeological spaces
We define a notion of cosheaves on diffeological spaces by cosheaves on the site of plots. This provides a framework to describe diffeological objects such as internal tangent bundles, the Poincar'{e} groupoids, and furthermore, homology theories such as cubic homology in diffeology by the language of cosheaves. We show that every cosheaf on a diffeological space induces a cosheaf in terms of t...
متن کاملInner Product Spaces of the Homology Groups of Manifolds
We discuss the inner product spaces of the middle homology groups of manifolds of dimensions 2 and 4. We prove that two compact 2-manifolds are homeomorphic if and only if the inner product spaces of their first homology groups are isomorphic. We outline a proof that every inner product space can be realized as the first homology group of some surface. We conclude by proving that two simply con...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010